	pulling structure in terminal
	Charging By Induction
	the second of the second by the second s
1.	An object can be charged by friction. If cotton comes in contact with wool, the wool
	electrons and has a the charge. The cotton
	of an entrande
	electrons and has a cnarge.
2.	The easiest way to make an object neutral is to connect it to the
	conductor called a
3	If the object is negatively charged, the electrons flow from the to the
	in the second
	and the bulk bulk bulk to the from the
4.	If the object is positively charged, the electrons now non the at an grathed and as scattering at
	the fraction of the lead(baby ratio
5.	An object can also be charged by contact. If an object is touched by a positively charged
	object, the uncharged object electrons and now becomes
	a water a water and a water
	(attract repel) negative charges.
.6.	Negative charges (attract, reper) negative on a geor
	Negative charges (attract, repel) positive charges.
7.	If you approach an uncharged object with a positively "harged object and ground the
	uncharged object, electrons will move,(toward, away from) the ground
	and the object will become charged, mentile with the sate with the
	Charging by this method is called charging by a high-rai successed. Bith 12 8st.a in success 2.
	Charging by this method is survey and any and any charge.
8.	Charging by induction occurs in nature. Thunderclouds have a
	At the surface of the earth, there is a charge.
	Lightning moves from the to the

,-

ISL;

			1140	14/11/01		
 	-	-	_	-		

DATE:

NAME

CHAPTER 10 Section 10.2 Review (Alternative Format)

Goal • To review the concepts from Section 10.2.

1. Draw a line to match each term with its effect. · changes distribution of electrons on another object, but

- · charging by contact
- · charging by friction
- · charging by induction
- · generates opposite charges on the materials rubbed · generates the same type of charge on the neutral object as the charged object

does not change the object's overall charge

LASS: BLM 10-16

- 2. A metal leaf electroscope is charged. A positively charged rod moves near the sphere.
- a. Draw charges on the electroscope.

(positive / negative). c. How would the diagram change if the sphere and rod were insulators?

- A. The leaves would get closer together.
- B. The leaves would move apart.

C. No change.

Explain how you know.

ON Science 9 Blackline Masters BLM 10-16 Section 10.2 Review (Alternative Format)

Copyright © 2010 McGraw-Hill Ryerson Limited

CLASS: CLASS: CHAPTER 10 Section 10.2 Review (Alternative Format) CLASS:	() (CHAPTER 10 Section 10.2 Review (Alternative Format)	CLASS: BLM 10-16 (continued)
 3. Look at this figure. The strength of an object's electric field (increases / decreases) as distance increases. 		 7. The diagram shows representative charges on a rod and two identical metal s + + + + + + + + + + + + + + + + + + +	pheres.
 4. You can charge a balloon by rubbing it against your clothing. Then you can stick the charged balloon to a wall. a. The wall is charged by (contact / friction / induction) because b. The balloon eventually falls from the wall because 		 b. The rod is moved closer to the spheres. Draw the resulting charges. c. One sphere is moved resulting charges. + + + + + + + + + + + + + + + + + + +	away. Draw the
 5. A negatively charged ebonite rod is held near a pith ball electroscope. If the charge of the pith ball is positive, then the pith ball will If the charge of the pith ball is neutral, then the pith ball will If the charge of the pith ball is negative, then the pith ball will 6. You are given wool and material X. You have a pith ball electroscope. 		+++++++++++++++++++++++++++++++++++++++	
How can you tell which material holds on to its electrons more strongly?		d. The rod is moved away. Draw the charges on the spheres and the rod.	

(

ON Science 9 Blackline Masters BLM 10-16 Section 10.2 Review (Alternative Format) Copyright © 2010 McGraw-Hill Ryerson Limited

ON Science 9 Blackline Masters BLM 10-16 Section 10.2 Review (Alternative Format)

-

Copyright © 2010 McGraw-Hill Ryerson Limited